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$ Centre de Recherches Math6matiques. Universit6 de Monu6al, C P 6128 Succ. A, Montdal, 
Qu6bec. H3C 317, Canada 
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Abstract. We describe all contractions of the affine Kac-Moody algebra Aj‘ )  which presenre 
various gradings by the cyclic groups 2h and as well as a grading by & x &, together with 
the conmctions of simultaneously graded representations of AY’ and their tensor products. An 
application is given to the branching rules for A!” 3 A?) for a number of distinct embeddings. 
each associated with a particular grading. 

1. Introduction 

Deformations of a Lie algebra by means of singular transformations to its tensor of structure 
constants is a standard procedure in mathematics [1-31 and in physics [4,5], although 
physicists often restrict themselves to much less general situations in practice. Such 
deformations of a Lie algebra are known as contractions. A major handicap of this approach 
is that it does not extend the deformation procedure in any obvious way to an important 
part of Lie theory, namely the theory of representations of Lie algebras. Indeed, there are 
apparently no deformations of representations to be found in the mathematics literature, 
although some appear in the physics literature, for example in the work of Gromov [6,7] 
who has explicitly developed a deformation of representations of unitary Cayley-Klein 
algebras based on contractions. The deformations of Lie algebras preserving a grading by 
a finite Abelian group G as introduced in [8,9] and developed further in [10-12] not only 
extend naturally to all representations but allows one to simultaneously study deformations 
of all those Lie algebras, both finite and infinite, which admit a grading by G. 

An investigation of contractions of an infinite-dimensional Lie algebra is undertaken 
here apparently for the first time, although the applicability of the method to this case 
is implicit in [9]. We study Contractions of the affine Kac-Moody algebra AY) and its 
representations which preserve Zz-, &-,-and Zz x Zz-gradings. The aim in this article is 
twofold first, to use AI’) as a laboratory to illustrate and explore various aspects of graded 
contractions as applied not only to algebras but also to their representations and even tensor 
products of their representations; and second, to explore specific properties of the structure 
and representation theory of a Kac-Moody algebra. Although from the standpoint of the 
graded contractions the computations here are not much different from those in [8-121, the 
result of the contractions give rise to some new phenomena not encountered in the finite 
case. Thus for example a contraction of AI’) may turn out to be an algebra which is a 
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semidirect product of AY’ with an infinite-dimensional Abelian ideal-an ‘inhomogeneous, 
AY)’. Moreover, we will illustrate the phenomenon, not possible for finitedimensional Lie 
algebras, whereby a Kac-Moody algebra may be maximally embedded in itself. ’ 

In section 2 we brieffy describe how graded contractions are determined. In particular 
we recall the three sets of equations for the contractions, respectively, of Lie algebras, their 
representations and tensor products of their representations. Relevant Z2-, &-, and & x &- 
gradings of AY) are described explicitly in section 3. The corresponding contractions of 
the Lie algebra are determined in section 4. For every conmction of the Lie algebra there 
is a menu of possible contractions of the representations. In sections 5 and 6 we find, 
respectively, the corresponding contractions of representations of the Lie algebra and their 
tensor products. Note that this analysis is done without fixing a specific representations, 
it applies to all of them. The gradings of particular highest-weight representations are 
described in section 7. An application of the aded contraction to the computation of 
branching rules for various embeddings of AIw in AY) is made in section 8. These 
embeddings and branching rules are different from those previously identified [13]. 

2. Graded contractions 

In this section we briefly overview the method of graded contractions following [8-121. It 
is convenient to introduce some notation appropriate to the case of a general Lie algebra L 
before embarking later on a study of AY). 

Let L be a Lie algebra, finite or infinite dimensional, graded by a finite Abelian group, 
G, so that 

L = @ Lj with [Lj ,  La] C Lj+k for j ,  k E G 
lac 

where [L j ,  L k ]  is the linear space generated by the products in L of every element of Lj 
with every element of Lk. The product in L has been indicated by [., .I, and that in G by +. 

The Lie algebra L is said to have G-graded structure K, where the symmetric matrix 
K = ( ~ j k )  is defined by 

0 if [ L j ,  Lkl = O  I 1 if [ L j , L k l # O .  
Kjk = 

The G-graded contraction, Le, of L is the Lie algebra isomorphic to L as a vector space 
and sharing the same graded decomposition (2.1), so that Lj := Lj ,  but whose product is 
defined by 

[L;, LEI, := E j k [ L j ,  C cjdj+k . (2.3) 

From ( 2 3 ,  the antisymmetry of [., .] and the Jacobi identity it follows that the contraction 
matrix E satisfies the constraints 

(2.4~) 
(2.46) 

and 
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In (2 .4~)  the value * indicates that 6 j k  is arbitrary. Any equation containing * which is 
obtained from (2.4~) is to be dropped since the corresponding constraint is not required. 

A G-graded decomposition (2.1) of L leads to a G-grading of any L-module V :  

v = @ V, where LjV, y+, 
mEG 

and 

In the generic case L j  V,  # 0, but in general let 

0 i f L j V m = O  
if L j V ,  # O .  A j m  = [ (2.7) 

The L-module V may be converted into an L6-module V L , * ,  with V,,?@ := V , ,  through 
the introduction of a matrix @ of additional contraction parameters pj,. In terms of these 
parameters: 

L;v:* := q j , L j v m  c *j,v;;: (2.8) 

and 

[ L ; ,  L i I e v : *  := *k"#j,k+mLjLkVm - * j m * k , j + m L k L j V m .  

[ L : ,  L;lev:* c ~ j k ' k j + k . m L ~ + k V ~ @ .  (2.10) 

(2.9) 

However, (2.3) implies 

For consistency it is necessary that 

* jm = * if A,, = 0 (2.1 la) 

and 

*k"hj,k+m = *jm*k,m+j = 6 jk$ j+k ,m if K j k  # 0 .  (2.11b) 

Any consistency condition obtained from (2.11b) which involves *, arising from 
either ( 2 . 4 ~ )  or (2.1 la), is to be dropped. 

Finally if V and W are G-graded L-modules, then the tensor product module V €3 W 
is correspondingly graded 

V € 3  W = @ ( V  @ W), with ( V B  W), := @ V, €3 W, (2.12) 
PEG m+n=p 

so that 

(2.13) 
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and 

L j W  63 W ) ,  = {((Lj V m )  63 W.) 4- (vm 63 (Lj W.))] c (V @ W ) j e r .  (2.14) 
m+n=p 

Carrying out simultaneous +contractions of V and W with respect to e and introducing 
yet another matrix, r ,  of contraction parameters r,,, results in the conversion of the G- 
graded tensor product module into an LL-module (V 63 W)'-*,' with 

(2.15) 

The action of L' is defined equally well by 

Noting that (2.15) implies 

v;$ 8 W? G (V 8 w);*J if rmmn # o (2.18) 

it follows from the use of (2.8) in (2.16) and (2.17) that 

@j,m+nrmn = @jmtj+mm.n *jnrm,j+m. (2.19) 

In what follows the case L = AI'' will be aeated in detail for the three grading groups 
G = Zz, Z3 and Zz x 232. For each of these grading groups a number of different gradings 
may be identified. For each grading all possible e, + and r may be found by successively 
solving (2.4), (2.11) and (2.19). 

3. Gradings of AY) 

The three-dimensional simple Lie algebra AI has basis h, e and f with 

1 0  0 0  
"(0 -1 )  e = ( :  A) f = ( l  o) 

with products defined by commutators so that: 

[h, h] = [e ,  el = [f, f l  = 0 [h, el = 2e [h, f] = -2f [ e ,  f] = h .  (3.2) 

The corresponding infinite-dimensional affine Kac-Moody algebra AY' has basis hk, ek, fk 
and $ with k E E, where 

h r = ( "  0 --tk O ) . = ( O  0 0  +) .=(PI :) $ = c ( i  y )  (3.3) 
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where c is an arbitrary complex parameter. Products are defined by a slight modification 
of commutators necessitated by the fact that (3.3) is not a matrix representation of Ai'), 
merely a specification of its basis emphasizing its structure as a central extension of a loop 
algebra. The required product rules take the form: 

[hi,  hkl = [ej ,  ea1 = [fit;., hI = [hj,  $1 = [ea, $1 = [A, $1 = I$, $1 = 0 
(3.4) 

[hj,  esl = 2ej+k 

for all j ,  k E Z. 

&-gradings 

[hj,  f k ]  = -2h+k [ej,  f k 1  = hj+k 4- jsj+k,o$ 

The algebra AY) admits, amongst others, the following gradings: 

1 1 1  

1 1 1  
K* = ( I  1 1) (3.7) 

0 1 1  

1 1 0  
& = ( l  0 1) 

0 0 1 1  
+(o 1 1 1 1  0 1 1) 

1 1 1 1  

(3.9) 



4130 A Hussin et a1 

It is to be noted that the &-grading @, the &-grading p and the Zz x Zz-grading 9 are 
not generic, in the sense that the corresponding matrices K contain some zeros. Whether or 
not the gading is generic, the grading subspace Lo is a subalgebra of AY'. It so happens 
that the subalgebras L{, Lt and L;6 are all Abelian. However, L;, L;, L;6 + L:,, and 
L;6 + L:, are all isomorphic to AY). The complementary subspaces are representations of 
AY' under the adjoint action. They are irreducible for the ZZ- and ZZ x Zz-gradings, and 
reducible as L.1 @ Lz for the Zs-gradings. 

4. Contractions of A?) 

Once a grading of a Lie algebra is known one can determine all of its contractions which 
preserve that grading. In this section we do this for the &-, &- and 2& xZz-gradings of A!') 
identified in the previous section. The contraction matrices e, are found by solving (2.4). 
In the non-generic case it is important to remember that only a proper subset of (2 .4~)  
applies, since the presence of factors * renders some equations superfluous. In all cases 
there exist two trivial solutions to (2.4), namely the uncontracted solution B = IC and the 
totally contracted (Abelian) solution E = 0. The full sets of solutions can be parametrized 
as follows. 
The generic &-grading a. Contraction matrices em:  

(: s) (xo :) 

(: F) 
The non-generic &-grading ,¶. Contraction matrices eB: 

The generic &-grading A. Contraction matrices &: 

with xu = y z  (Z i 3 
(i ! H) (i i 9 with yz  = O  

The non-generic &-grading p. Contraction matrices EN: 

* x x  * X Y  

(4.1) 

(4.2) 

(4.3a) 

(I p i) (4.3b) 

(4.4) 

The non-generic Zz x &-grading 11. Contraction matrices E'? 

(i 5 :) with u x = u y  u z = w y  v z = w x  

z v w  

X O O O  
y o 0 0  0 0 0 . 0  X O O Y  

(4%) 

(4.5b) 
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Each of the above contraction matrices may be renormalized by the independent scaling 
of all elements of each G-graded subspace Lj6 of L‘ by a non-zero parameter uj to give 
4‘‘ = ajLj t .  This has the effect of transforming B to &with 

The scaling matrix, eS, with elements 

(4.6) 

(4.7) 

is itself a contraction matrix satisfying (2.4). For the gradings under consideration here the 
scaling contraction matrices e’ take the form 

a b2jc bcla 
a a  

&:(: b C a )  % : (  a bcja c2fb 
l a  a a a \  

a bcld c2/a cdfb & x & :  
a b2/a bcld bdjc 

a bdlc  cdfb d21a 
(4.8) 

They may be used to renormalize each of the contraction matrices E ,  given in (4.1)-(4.5) 
to one or other of the forms given in table 1. For example, € 0 ,  as given by (4.5a) with x ,  
y ,  z ,  U, U, w all non-vanishing, may be renormalized by using P as in (4.8) with 

With these particular values we obtain 

where o signifies the element by element product of matrices defined in (4.6). 

the non-vanishing matrix elements to 1, namely 
It is notable that there are only two cases for which it is not possible to renormalize all 

* * l x  

1 0 0 0  
x o o o  

for 0 f x  # 1 .  (4.9) 
* l x  

x o *  
eL = ( 1  * 0 )  and 

The contracted algebra Lc may have quite a different structure from that of L. Indeed, 
this is what makes contractions interesting. To illustrate the types of shcture  that may 
emerge, consider the Lie algebra L = AY1 and its generic &-grading CI defined in (3.5). 
As pointed out earlier, L.: is itself isomorphic to AI”. 
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Table 1. Renormalized conUaction matrices B for Zp, 4-, and h x 4-gradin@. Here and 
in subsequent tables I.' is used to indicate a zero malrix element, while * is used to indicate an 
arbitrary matrix element. 

Grading E Independent solutions 

z1: 01 ( x . y )  = (0.0). (0. I). (1.0). (1. I) 

(! :) 

(I : I) 
1 . .  
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In this case there exist three non-trivial contraction matrices, e? 

(4.10) 

For the first of these [L;=, L;"] = 0 so that Lf is Abelian, while [L$, L;"] = Lf . It follows 
that L'" is an 'inhomogeneous' Kac-Moody algebra in the sense that it is isomorphic to 
AY' + L;", where Liz is an infinite Abelian algebra, playing the role of translations, which 
affords a representation of L$ = AI]) under the adjoint action. 

In contrast to this, for the second case of (4.10) L;' is still isomorphic to Ai" and lhe 
algebra Lfm = AY) eB Lf is decomposable. Once again Lf is an infinite Abelian algebra. 
but it now commutes with L$ = AI]). 

For the third case of (4.10) the contraction is such @at L$ is now Abelian. The 
isomorphism with A Y )  is lost. The full contracted algebra Le' = L$ cB L;= is again 
decomposable, but its subalgebras L$ and L;" are Abelian and nil-potent of degree 2, 
respectively. 

In analysing the structure of the algebras obtained by the graded contraction of AY' it 
is of interest to know the minimal set of vectors of the contracted algebra which generate 
the infinite set of all vectors correspondin to the positive root vectors of AY). It is well 
known that the set of positive roots of Afdis given by 

(4.1 1) 

The corresponding root vectors of All), denoted by E p u o t 4 ~ , .  may be generated under the 
product [., .] by the simple root vectors E,, and E a r .  The identification with the basis (3.3) 
is such that 

(p=o+qat : P.4 € Z t ,  IP -41 < 11. 

Here (E,,, Fno, ffd = (fi, e-i, $ - ho) and ( E u , ,  Fa,, Hc,) = (eo, fo. ho) span the 
three-dimensional simple Lie algebras A I  corresponding to the simple roots cuo and a,, 
respectively, of A;'). 

In general we have 

Euntk8 = E(k+l)aotkui = 

(4.13) 

where 6 = 010 + 011 is a null-root of Ai]).  
Consider first the &grading a defined in (3.5) and its contractions given in (4.4). In 

order to find the set of vectors generating all Epao+pa, we need to distinguish between the 
families of AY) root vectors in L; and Ly. In this case we have 

L; = {hzk, ezk,  f z k ,  k E % $1 {E?xs, Eu,+zks, EuO+(2k-t)s, k E ?k $1 
(4.14) 

Ly = {ha+[, eut t ,  f a t ] .  k E zl = (E(Zkt1)s. Ecll+(at1)6,  E,,t?xs, k E ZI. 
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By way of example we now analyse the contraction defined by e' = (:A). For 
sufficiently large k, any of the vectors in (4.14) can be generated by products of the type 
[LO, LO] or [LI, LO] which, in contrast to those of type [ L 1 ,  L l ] ,  are not contracted to zero. 
Indeed we have 

- 2Ecq+~ka = [E=,, Em1 E [LO, Lo1 

- 2Ea,+p+I)s = [&,+S. ~ w s l  E [LIS Lo1 

There remain just two non-simple positive root vectors of AY) to consider, namely E,,+s 
and E,,+s. For the latter 

- 2Ea1+s [Ea, I Ed E [LO, L I I .  (4.16) 

However, for the former 

[E.,, Esl E ~ L 1 , L I l  (4.17) 

which vanishes under the given contraction. In fact E,,+s = Ebn+ar,  cannot be generated 
from E ,  and E,, under this contraction. It follows from these results, that in the case of 
the contraction defined by ea = (ii) vectors corresponding to all positive root vectors of 
Ail' are gemrated by 

E,, Ea, and Eoo+~.  (4.18) 

The results of a similar analysis of all possible contractions of the two distinct Z2- 
gradings, IY and p, of Ail' given in (3.5) and (3.6) are displayed in table 2. 

'Ihble 2. Generators of the Vectors corresponding to all positive root vectors of A:" for all 
possible contractions of Z1-pded AY] ,  

Grading Contraction Generators 

4 : E  (: !) Ea,,, Eu,.Em0+6 

(! :) 
(: ;) 

E w + 6 ,  Emo+a6. Ea,, f i q + 0 X + l ) 6 .  %+I16 fork 2 0 

En0+%63 Eq, EW,+~ZG+I)S. E(ZX+I)S fork B 0 

4 : P  1) E.,,. E., , E e + l r  fork B 0 ( 
[: ;) E ~ + u .  Eq+xs  fork > 0 
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5. Contractions of representations 

Assuming that one has the Lie algebra L and its representations V graded by means of the 
same Abelian grading group G one can study the graded contractions of representations 
even without any detailed knowledge of the graded subspaces V, of V .  The details of the 
gradings of some representations of AY) are discussed later in section 7. Here we merely 
assume that each representation has been graded in a manner consistent with the gradings 
of A?) spelt out in section 3. 

For each contraction specified by one or other of the matrices e tabulated in 
section 4, (2.1 1) may be solved for all possible matrices $ governing corresponding graded 
contractions of representations. In order to do this for a specific representation V it is 
necessary to know the matrix A of L-module parameters (2.7). The graded representations 
of AI]) of interest here are all generic in the sense that Ajm = 1 for all j and m. Henceforth 
this will be assumed to be the case, allowing the solutions $ of (2.11) to be enumerated 
for each E, independently of the particular representation under consideration. 

It is to be noted that replacing m by m + n for any n in (2.1 Ib) leaves these equations 
unaltered except for a permutation of the columns of + determined by the action of the 
element n of the grading group G. This implies that if $ is a solution of (Z.ll), then others 
may be obtained from $ by suitable permutations of its columns. 

Before embarking on the enumeration it is worth disposing of some scaling possibilities. 
All vectors in the G-graded subspace V, of any L-module V may be independently scaled 
by a non-zero parameter b, to give Vk = b,V, for each m E G. This corresponds to 
changing $ to = I I ,  with 

If $ satisfies (2.11) then so does $', Such a scaling leaves not only all 0's unaltered but 
also the whole of the top row of Q, as can be seen by setting j = 0 in (5.1). However the 
scaling allows any non-vanishing entry below the top row in the fixed column labelled by 
m to be renormalized to 1. The existence of 0's in this column will leave corresponding 
ratios of the scaling parameters free to renormalize entries in other columns. 

Returning to the top row of $ in the generic case for which KW # 0, it follows 
from (2.1 Ib)  that if €00 = 0 then all the entries in the top row of I I ,  are 0. Moreover, having 
renormalized any non-vanishing em to 1, it also follows from (2.11b) that @om = 0 or 1 for 
all m. Hence in the generic case all the entries in the top row of $ are 0 or 1. This is not 
true in the non-generic case. 

The scaling matrices $s are given for each of our grading groups by 

1 1  
2& : bja c f b  a / c  ( C / Q  a f b  b jc  % '  ( b j a  a j b )  

1 1 1  
bja a jb  d j c  c jd  

d fa  cfb bfc  afd 
cja d j b  a j c  z2 x z2 : 

All non-trivial solutions $ of (2.11) are given, up to scaling and column permutations, 
in tables 3-7 for each renormalized contaction matrix E of table 1. The scaling of a solution 
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11, involving an arbitrary non-zero parameter p may be illustrated by the following typical 
example: 

0 0 0 0  0 0 0 0  
g o o 0  1 0 0 0  

P O P 0  1 0 1 0  

(5.3) ..-(* 0 0 l )  0 0 l )  

where the required scaling matrix is obtained from the izz x izz matrix 
setting a = p ,  b = 1, c = p ,  and d = 1. Other scalings are done in the same way. 

given in (5.2) by 

Table 3. All possible non-trivial * (up to scaling and cyclic permutadadons of wlumns) for each 
&-graded renormalized wntraction matrix ca. 

€ * 
(: :) (; :) 
(: !) (; !) (! t) (! :) 
(! :) ( t  t )  (! :) (1 :) 
(: ;) (; :) 

Table 4. All possible non-trivial 11 (up to scaling and cyclic permutations of columns) for each 
renormalized &-graded contraction matrix &. The parameters U and U are independent and 
arbitmy. and not subject to s d i g .  

It is notable that only in the non-generic cases are there solutions + containing non- 
vanishing entries which cannot be scaled to 1. These exceptional cases include, for example: 

(5.4) 

Of course, if any one of the parameters is 0 then no scaling of that parameter is required. 
Moreover, it may be shown that if any one or more of the unscaled parameters p ,  q, r, s 
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Table 5. AU possible non-trivial d (up to scaling and cyclic permutations of columns) for each 
renormalized &-graded contraction matrix e’. 

E d 

(; ; !) 
(; ! !) 

( i  I ~ 1 )  

( i  1 r )  
(I : I) 

( i  i I )  
(I f 1) ( r  : ;) 

( I  ; ;) 

(: : 1) 

(I 1 r )  

1 . .  

1 . 1  

1 . .  

1 .  

I .  

. I 1  
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Table 5. Continuned. 

B 11 

(I ; 1) (; : :) (: : :) 
1 . 1  1 . .  

Table 6. All possible non-trivial $J (up to scaling and cyclic permutations of columns) for each 
renormalized &-graded contraction matrix d‘. The parameten are subject to the constraints: 
(i) x E (0. I);  if x = 0 then Y E (0.11; if x = I then y is arbitrary; (ii) if pqr = 0 then p .  
q, r E [O,  I]; if pqr f 0 then p = q = I with r arbitrary; (iii) U, U, w are independent and 
arbitmy. 

E 11 

( i  i i )  

appearing in rows of + other than the first is 0, then the remaining non-vanishing parameters 
may be rescaled to 1. Thus in the last two examples of (5.41, if p q r  # 0 and pqrs  # 0, 
respectively, then the solutions may be rescaled to be of the f o y :  

0 0 0 0  1 1 1  
+*= ( r  1 1 0 o) ..=(; : : :) 

l S O 0  
Unfortunately, nothing can be done about parameters in the first row of +. 

The compatibility between the contraction of the Lie algebra and of its representations 
allows us to determine representations of comparatively exotic algebras whose representation 
theory is little understood. For example, we identified the ‘inhomogeneous’ Kac-Moody 
algebra AY) D L; by invoking the &-grading LY of AY) and the contraction specified 
by E = (1;). Non-trivial compatible connactions of representations of Ai1) to give 
representations of A!” D L; are then specified by II, = (:A), (:) and (t). 
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Table 7. All possible non-trivial $ (up to scaling and the permutations 1234,2143,3412.4321 
of columns) for each renormalized 2% x &-graded conmuion matrix d. The parameten are 
subject to the sonshaints: (i) x E (0, 1); if x = 0 then y = L = 1: if x = I then y E (0,1] and 
L is arbitrary; (ii) if jk = 0 then j .  k E (0, 1); if jk # 0 then j = 1 with k arbitrary; (iii) if 
mn = 0 then m, n E IO. 1); if mn # 0 then m = I with n arbitrary; (iv) if pqrs = 0 then p. q .  
r ,  s E (0, I): if pqrs # 0 then p = q = r = 1 with s arbitrary; (v) I, a, U, w am independent 
and arbitrary. 

* * .  . . . .  1 1 1 1  I . . I  

(: : : :) (. ; 9 n )  (i I . . .  I a) (: I l l 1  : : :) (: I . . [  : : :) I . . 1  
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Table 7. Continuted. 

* * * x  t t u u  X t U X  X t X X  

(: T : ;j (: ; : :) (; j 1 rj (: : : : )( I  : : :) 
( i  1 ! j ) ( j  4 f I ) ( ;  i ; i ) ( i  j 1) 
(X f f 1) 

x . 1 .  . .  . I . . . L . . .  
x x x t  x x x x  x x x x  x x x x  

1 . 1 .  

Consider the first of these with + = (:A). Under the &-grading a any representation 
Vc.* = V:* f V[** is decomposable as a representation of L; = AY' since LiV:* g V:* 
and L;V?* 5 V?*. However, the action of L; gives L?V:* C V:* and L?V? = 0. 
Thus the 'translations' L; map V;.* to V;:'" and annihilate V;". It follows that under 
contraction each graded irreducible module V = V, + VI of L = AY) gives a reducible, but 
indecomposable module Vf.* = V:* D V:* of L' = AY' 3 Li. 

On the other hand for + = (k), L; annihilates both V:* and V;'*. Thus under 
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Table 7.  Continuted. 
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E 11 

t u x  X X X t  X X t X  X X f X  (i ! f ;) ( i  1 f) (! ; f I) (: ; r) 
(I f f I) (; ; f f) ( Y  ; f ;) (; x ; i) 
(; f I 5) (; ; r )  ( i  ; ;) (; I I i )  

. .  1 . 1  . . . .  
x x x x  x x x x  x x x x  x x x x  

contraction each graded irreducible module V = Vo + VI of L = A;" gives a decomposable 
module Vf,* = V:* @ V;'* of Lc = A ~ ) D  L;. Since the action of L; is trivial, the passage 
from L to L', together with the compatible contraction of representations specified by + =~ (:) is akin to the restriction of L to its subalgebra LO, together with the corresponding 
branching of representations. However, it should be emphasized that even if V = VO + VI 
is an irreducible representation of L = A!') which is decomposable into V:* @ V:* as a 
representation of L& further reduction may be possible. This is taken up in section 8 where 
the grading of representations is made explicit and branching rules are calculated. 

6. Contractions of tensor products of representations 

Any tensor product of representations of a Lie algebra L is itself a representation (in general 
reducib1e)~of L. However, after the contraction of L and its representations, the tensor 
product does not provide a representation of the contracted algebra LF unless the tensor 
product is also contracted. The requirements imposed on the tensor .product contractions 
can again be described without a specific choice of representations. 

For each contraction of representations specified by some particular matrix + given 
in section 5, (2.19) may be solved for all possible matrices r governing corresponding 
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contractions of tensor products of representations. For completeness it is also necessary 
to consider those matrices $ obtained from those of  section 5 by permutation of columns 
under the action of the grading group G. The linearity of (2.19) ensures that in each case 
the general solution r may be expressed as an arbitrary linear combination of particular 
solutions. We denote the corresponding coefficients in such linear combinations by a, b, 
c, . . . . These are independent parameters which may take on any value including zero. 

Table 8. Row matrix constnints on tensor product wntranions for &-gndings. 

Table 9. Row matrix constraints on tensor product contractions for Zs-gradings. 

(a : :) (: . .  : ;) 
(0 i )  (: : i) 
(4 1) (: g . i  a E) 

(a : :) (U { I )  
(; b I) ' (; j )  

6 "  

6 "  

In solving (2.19) it is helpful to note that these equations may be subdivided into disjoint 
sets of equations. Each set corresponds to a distinct value of j and depends only upon the 
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elements in the j th  row of the matrix +. It is therefore convenient to introduce a row 
matrix p ,  defined to coincide with the j t h  row of II, for some fixed j E G, so that 

pm = $jm for all m E G .  (6.1) 
The relevant set of equations (2.19) may then be rewritten in the form 

Pm+nTj(P)mn = PmTj (P) j tm .n  = P n ~ j ( P ) m . j t n  (6.2) 
where q ( p )  is used to denote the general solution, T ,  to (2.19) corresponding to the fixed 
j and p in question. To recover the general solution T to (2.19) for any particular II, it is 
then only necessary to impose the constraints: 

r = ~ j ( p )  with pm = @jm for all j , m  E G .  (6.3) 

Table 10. Tensor product contractions for &-gradings 

(: I;) (f !) (: :) 

(It n) (: !> (; :) 
(4 :) (I :) (: !) 
(: d)  (I :> (: ;) 

For the grading groups Zz and Z3 the general solutions, z j ( p ) ,  are displayed in a suitably 
parametrized form in tables 8 and 9, respectively, for each possible pair j and p,  with entries 
of p restricted, on the grounds of economy. to the values 0 and 1. In the case of &-gradings 
for each $ the resulting matrices z are displayed in table 10. In the case of &-grading5 we 
content ourselves with a single illustration of the method of calculation based on (6.1)-(6.3). 
In the case 

we have 

T=To(l l l )=T1(100)  =?z(loo). 
It then follows from table 9 that 

a b c  a a c  a b a  
~ = ( d  e f ) = ( a  0 O ) = ( d  e 0) 

\g  h i l  \g  0 il \a 0 O /  
so that a = b = c = d = g and e = f = h = i = 0. Hence, for + as given in (6.4), the 
general solution T to (2.19) takes the form 

r = a O O .  (6.7) 

More complete results for &-gradings may be found elsewhere [ 121. Those for Zl x Zz- 
(1 : :I 

gradings are too numerous to display. 
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7. Gradings of representations of AY) 

Thc gradings of a particular highest-weight representation of A?) are described explicitly 
for each of the gradings described in section 3. The method applies equally well to any 
other representation which allows a weight-space decomposition of the representation space. 

Each irreducible highest-weight integrable module VA of Ai') is labelled by its highest- 
weight h = howo+h~ol -k8 = ( i o ,  X I ;  k )  with Lo. hl, k E Z'. The level, L, and depth, d ,  
of A are given by L = ho + bl and d = k,  respectively. Such a module has a weight-space 
decomposition V h  = @ s c p V J ,  where the dimension of V," is the weight multiplicity m; 
of the weight U = uoowo + ULOWI - d8 = (CO, U]; d).  

Each of the gradings of A:) defined in section 3 leads, as in (2.5), to a corresponding 
grading of each Ay'-module VA. To illustrate the nature of these gradings it is useful to 
consider the weight-space decomposition of some highest-weight irreducible representation. 
By way of example the weight-space decomposition of the module V('.oo) down to depth 
d = 10 takes the form [I41 
(CO,CT~) ... (7,-6) (5,-4) (3,-2) (1.0) (-1,2) (-3,4) (-5,6) ... 
d=O 1 
d = l  1 1 1 
d = 2 ~  1 2 1 
d = 3  2 3 2 
d = 4  1 3 5 3 1 
d = 5  1 5 7 5 1 
d = 6  2 I 11 7 2 
d = 7  3 1 1  15 11 3 
d = 8  5 15 22 15 5 
d = 9  1 7 22 30 22 7 1 
d = 10 1 11 30 42 30 11 I 
where the weight multiplicities appearing in any vertical string are the numbers of partitions, 
p(n),  of n generated by JJE, ( 1  - qk)-' = xzo p(n)q". 

Each of the gradings of section 3 leads to a corresponding grading V A  = em V; which 
is consistent with the weight-space decomposition in the sense that, for all weights U 

with m: # 0, V," C V,̂  for some m. Each point in the weight-space can therefore be 
unambiguously assigned a grading m. This has been carried out below for the module 
V'l,O:o) for each of the gradings of section 3. 

&-grading a: 

(UO,UI )  ... (7,-6) (5,-4) (3,-2) (1,O) (-1,2) (-3,4) ( -5 ,6) . . .  
d=O 0 
d = l  1 1 1 
d = 2  0 0 0 
d = 3  1 1 1 
d = 4  0 0 0 0 0 
d = 5  1 1 1 I 1 
d = 6  0 0 0 0 0 
d = 7  1 1 1 1 1 
d = S  0 ~~ 0 0 0 0 
d = 9  1 1 1 1 1 1 1 
d = 10 0 0 0 0 0 0 0 
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&-grading B: 
( u o ~ , ~ I )  ... (7,-6) (5,-4) (3,-2) (1,O) (-1.2) (-3.4) (-5,6) ... 
d=O 0 
d =  1 1 0 1 
d = 2  1 0 1 
d = 3  1 0 1 
d = 4  0 1 0 1 0 
d = 5  0 1 0 1 0 
d = 6  0 1 0 1 0 
d = ?  0 1 0 1 0 
d = 8  0 1 0 1 0 
d = 9  1 0 1 0 1 0 1 
d = 10 1 0 1 0 1 0 1 

&-grading A: 
(ObiUl) ... (7, -6) 6 - 4 )  (3,-2) (1,O) (-1,Z) (-3,4) (-5,6) ... 
d = O  0 
d = l  2 2 2 
d = 2  1 1 1 
d = 3  0 0 0 
d = 4  2 2 2 2 2 
d = 5  1 1 1 1 1 
d = 6  0 0 0 0 0 
d = 7  2 2 2 2 . 2  
d = 8  1 1 1 1 1 
d = 9  0~ 0 0 0 0 0 0 
d = 10 2 2 2 2 2 2 2 

&-grading p: 

( ~ O > O . I )  ... (7, -6) (5,-4) (3, -2) (1.0) (-1,Z) (-3,4) (-5,6) ... 
d=O 0 
d = l  1 0 2 
d = ~ 2  1 0 2 
d = 3  1 0 2 
d = 4  2 1 0 2 1 
d = 5  2 1 0 2 1 
d = 6  2 1 0 2 1 
d = 7  2 1 0 2 1 
d = 8  2 1 0 2 1 
d = 9  0 2 1 0 2 1 0 
d = l O  0 2 1 0 2 1 0 
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.Z& x &-grading 7: 

(go, 0 1 )  ... (7, -6) (5, -4) (3, -2) (1 ,O) (-1.2) (-3,4) (-5,6) . . 
d = O  00 
d = l  11 01 11 
d = 2  10 00 10 
d = 3  11 01 11 
d = 4  00 10 00 10 00 
d = 5  01 11 01 11 01 
d = 6  00 10 00 10 00 
d = 7  01 11 01 11 01 
d = 8  00 10 00 10 00 
d = 9  11 01 11 01 11 01 11 
d = 10 10 00 ~ 10 00 10 00 10 

Combining the results displayed in the weight-multiplicity diagram with each of the 
above grading lattices enables each graded subspace V ~ ' ~ o O )  to be identified. 

It is not necessary to assign the grading m = 0 to the highest weight (1,O; 0) of the 
irreducible module V(')O;o), as has been done in each of the above displays. In general 
the highest weight may be assigned any grading value and each graded subspace Vi'*oo) is 
found by positioning the weight-multiplicity diagram on the periodic grading lattice in just 
such a way that the highest weight falls at an appropriately labelled point. 

It is a trivial matter to apply the same gradmgs to any other module VA. It is merely 
necessary to assign the highest weight some particular grading and to position the relevant 
weight-multiplicity diagram so that the highest weight falls at a point in the grading lattice 
labelled by this value of the grading. Each grading subspace V," is then identified by the 
intersection of the weight-multiplicity diagram of VA with the sublattice of the grading 
lattice consisting of those points labelled by m. 

By virtue of (2.5), which includes the special case LoV, C V,, each graded subspace 
Vil.oo) serves to define an Lo-module. In some cases it is easy to identify these modules. 
In particular, this can be done in those cases for which LO is isomorphic to L = AY', This 
is true, as pointed out in section 3, for the &-grading cy, and the &-grading A. We shall 
return to this in section 8. 

8. Branching rules defined by gradings 

It follows as special cases of (2.1) and (2.5) that [LO, LO] Lo and LoV, E V, for all 
m E C, respectively. Hence each graded subspace V ,  serves to define an Lo-module. In 
particular, in those cases we have identified for which L = LO = AI') a consideration of 
the graded subspaces illustrated in section 6 enables the projection between weight spaces 
of Af" in the reduction AI1) J Ai') to be canied out explicitly, thereby leading to an 
evaluation of the corresponding branching rule. 

This procedure may be illustrated as follows for the case of the &-grading cy. Consider 
first the irreducible representation V ( ' ~ o o )  = V(',oo) 0 + V,(I,oo). The graded decomposition 
of the weight space takes the form 
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d = O  1 0 
d = l  0 0 0  1 1 1  

0 0 0  d = 2  1 2 1  
0 0 0  2 3 2  d = 3  

d = 4  1 3 5 3 1  0 0 0 ~ 0  0 
d = 5  0 0 0 0 0  1 5 7 5 1  
d = 6  2 1 1 1 1 2  0 0 0 0 0  
d = 7  0 0 0 0 0  3 1 1 ~  15 11 3 
d = 8  5 15 22 15 5 0 0 0 0 0  
d = 9  0 0 0 0 0 0 0  1 7 22 30 22 7 1 
d = l O  1 11 30 42 30 11 1 0 0 0  0 0 0 0 .  

Changing the scale on which the depth is measured, each of the above two sets of 
level-1 weights (uo, U I ;  d) of A Y ) ,  along with their multiplicities, may be associated with 
level-2 weights (CO, 51; e) of the isomorphic subalgebra AY' to give for V, 

(%TI)  ... (8, -6) (6, -4) (4,-2) (2,O) (0,2) (-2.4) (-4,6) ... 
e = O  1 
e = l  1 2 1  
e = 2  1 3 5 3  1 
e = 3  2 7 11 I 2 
e = 4  5 15 22 15 5 
e = 5  1 11 30 42 30 11 1 

and for 

(1 .o:o) 

(CO, C I )  . .. (8. -6) (6, -4) (4, -2) (2,O) (0,2) (-2,4) (-4,6) . . . 
e = 112 1 1 1 
e = 312 2 3 2  
e = 5 / 2  1 5 7 5  1 
e = I 1 2  3 11 15 11 3 
e =9/2 1 I 22 30 22 7 1. 

The weight-space decomposition of the irreducible level 2 module v(*.O:O) is 

(ro, 51) ... (8, -6) (6, -4) (4, -2) (2,O) ( 0 , ~ )  (-2,4) (-4,a) . .. 
e = O  1 
e = l  1 1 1 
e = 2  1 2 3 2  1 
e = 3  2 4 5 4  1 
e = 4  3 7 10 I 1 
e = 5  1 5 13 16 13 5 1 

and that of V(O,Zo): 

( ~ O , T I )  ... (8. -6) (6,  -4) (4,-2) (2,O) ( 0 , ~ )  (-2,4) (-4,6) ... 
e = O  1 1 1 
e = l  1 2 '  1 
e = 2  1 3 4 3  1 
e = 3  2 5 7 ' 5  2 
e = 4  1 4 10 13 10 4 1 .  
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These may be exploited to determine the first few terms of the required branching rules. 
The procedure is to systematically subtract from the weights of VJ1.O:o) and V:l'oo) various 
copies of the weights of V(2*@e) and V@Ze) along with those branching-rule multiplicities 
necessary to give zero at successive depths e = 0, i, 1, i, . . . . 

The above data gives 

(l.o;o) - V(2.0:O) + V(2.o;I) + v(2,0:2) + 2v(2.@3) + 2 ~ ~ 0 4 )  + 3v(Z.O:" + , , , 

(8.1) 

It is not necessary to examine any weights other than those in the dominant sector since 
all the others are related to these by appropriate affine Weyl-group reflections. Working with 
previously tabulated strings of weight multiplicities it is easy to extend the above results, 

vo - 
,(,.o:o) = v(OmZ;1/z) + v(0.2:3/2) + v(0.2:5/2) + 2v(0.2:7/2) + 2v(O.Z9/2) + . . . 

The multiplicities of the weights (1,O; d) in V('*q'') take the form 

mil::$ = 1, 1,2,3,5,7, 11,15,22,30,42,56,77,101,135,176,231,. . . 
for d = 0, 1, 2, . . . , so that those of V$") and Vr,") are given by 

(8.2) 

(1.0:O)O - m(,,o:e) - 1,2,5,II ,  22,42,77,135,231,385,627,1002,. .. 
(8.3) m(l'O:O)' - - 1.3,7,15,30,56,101, 176,297,490,792, 1255,. . . 

for e = d/2 = 0, 1, 2, . . . and 4, 3 , .  . . , respectively. Similarly the weight multiplicities of 
(2,O; e )  and (0,2; e)  in both Vo,8;o) and V(O.Zo) are given by: 

m ~ ~ : ~ ~ ~ ~  = 1, 1,3,5, 10,16,28,43,70, 105, 161,236,. . . 
mg:$!!! = 0, 1,2,4,7,13,21,35,55,86,130,196.. . . 

(8.4) m(o.2:o) - (2,0;e) - 1,2,4,7,13,21,35,55,86,130,196,287,420,. . . 
mg:$!!; = 1,1,3,5,10,~16,28,43,70,105,161,236,350,. . . 

for e = 0 , 1 , 2  ,... . 
that 

Denoting the branching multiplicity of V" in V," by b>, it follows from (8.3) and (8.4) 

f o r e = 0 , 1 , 2  ,_.. ,  and 

1 3  for e = i, i, . . . . 
These results may be generalized as follows through the use of generating functions. 

It is well known that the suing function cii::; which serves to generate as coefficients of 



Graded contractions of the anne Lie algebra AY) 4149 

powers of q the weight multiplicities m~~~~~~ of V(l.O:o) = V('.O;O) 0 + Vy.40) coincides with 
the generating function for g(d) ,  the number of partitions of d,  that is 

Taking note of the fact that for the &-grading ct the grading, m, of each weight is 
0 or 1 according to whether its depth, d, is even or odd, respectively, it follows that 
the conesponding generating function for the weight multiplicities, or string function, of 

(I.0:O) - v(l.oo' . . 
"0 l IS Just 

(8.8) 

However, the string function for V(2.00) - V(o.G1/2) is given by 

Making due allowance for the change of scale in the direction of 6 in passing from weights 
of level 1 to weights of level 2, it follows from (8.8) and (8.9) that 

oa 
C(l.O:O)n (1.0) - C(I.0) (l.o;'% = n ( 1  +qk) , (c(2,0) (2.0;O) - c;;wjl/2)) , (8.10) 

k=l 

Similarly 

(1.00)" (l.o;o), - 
C(-1.2) - C(-1.2) - 

k= 1 

The generating function for the branching multiplicities is therefore given by 

(8.11) 

(8.12) 

This confirms and generalizes (8.5) and (8.6). 
The technique used here in the case of the pdcular  irreducible representation V('.O) may 

be readily applied to others. The key point is that in passing from the weights (ao, ut; d)  
of A\]' to corresponding weights (ro, 71: e) of the isomorphic subalgebra AY) the relevant 
mapping is defined by 

(no, a]; d)  + (70. TI; e )  = (200 + 61, a!; i d )  . (8.13) 
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Table 11. Branching multiplicities bj!'" = b ~ ~ ~ ~ . ~ ~  associated with the decomposition 
V ,  = @,bj!'" V* arising from the restriction of L = AY) to its subalgebn. h = AY' defined 
by the &-grading U given in (3.5). 

Zz-gradingcr f - ( m / 2 )  0 1 2 3 4 5 
(W. PI: E )  

(2.0: E )  I l l 2 2  3 
(hi). A I :  O h  

(0. I: Oh (1, 1: E )  1 1 1 1 2  2 
(2.0 010 (4.0: E )  1 1 2 3 5  7 

(2.2: E )  1 1 3  4 
(0,4 E )  1 1 2 3  5 

(2.0: Oh (4.0: E )  1 1 
(2.2;f) 1 2 3 5 8  12 
(0.4:f) 1 

(1. 1: 0)il (3, I; E )  1 1 2 4 6  10 
(1.3: f )  1 2 3 5  8 

(I ,  1: 0)I (3,1: E )  1 2 3 5 8  12 
(1,3:e) 1 1 2 4 6  10 

(0.2: Oh (4.0: E )  I 1 2  3 
(2.2: E )  1 1 2 4 6  9 
(0.4: E )  1 1  2 

(0.2:O)l (4.0: e )  1 1 2 3 5  7 
(2.2;d - 1 I 2 3 5 8 

(3.0; O h  

( 1.2: 0)l 

(Os*  E )  

(6.0: E )  
(4.2; f) 
(2.4: E )  
(0.6 f )  
(6.0: E )  

(4,2: E )  
(2.4; E )  
(0.6: 4 
(5. I; E )  
0.3: E )  
(1.5:~) 

(5. 1; E )  
(3.3: E )  
( I . % € )  

, (6.0: E )  
(4.2: E )  
(2.4: 6 )  

(0. 6; E )  

(6.0: E )  
(4.2:f) 
(2.4: E )  
(0.6: E )  

( 5 .  I: E )  
(3.3: E )  
(1.5:f) 
(5. I :  E )  

(3.3: f )  
(0.5: E )  

1 1 2 3  5 
I 1 2 4 6 1 0  

1 2 4  8 
I 2 4 7 1 2  

1 2  
1 2 4 7  1 2 2 0  

1 2  4 8 
1 1 2 4 6  

I 1 3 5 1 0 1 6  
I 3 . 6  II  I9 
l l 3 5 1 0  

1 2  4 7 I3 21 
I 2  4 8 14 25 

1 2 4 7  13 

I 2  4 7 
1 2 4 8 1 4 2 1  

1 2 4  8 1 4  
1 2  3 6 

1 2  3 6 IO 16 
1 2 4 8 ,I4 24 
I 2  4 8 14 24 

1 2 4  
1 2 4 7 1 2  

1 1 2 5 8 1 4  
1 2  4 7 

I 1 3 5 9 1 5  
1 2 3 6 1 1 1 8  

1 1 3 5 9  
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Table 12. Branching multiplicities b p  = bg,;‘.;? associated with the decomposition 
V,̂  = @,b$ V p  arising from various restrictions of L = AV’ to its subalgebras LO = A:’) 
defined by the &grading n and the Z3-gradings A. 

22-grading (I E = ~ O + E I  61 0 1 2 3 4 5 
( h A t : O ) m  O L O . @ I : E )  €0 

(1.0:O)o (2.0: E )  ‘ 0 1 1 1 2 2 3  
(1.0: 011 (0.2: E )  I 1 1 1 2 2 3  

(0. I: 011 ( I ,  I: E )  f 1 1 1 1 2 2  
(0, I: Oh ( I ,  I: E )  0 ’ 1  1 1  2 2 

&grading 1 E = E O + E I  EI o 1 2 3 4~ 5 
( & I . A I : O ) ~  (wn.@t:f)  €11 

(1.0 010 (3.0: E )  0 1 1 2 3 6 9  
(1.2: E )  0 1 2 4  7 1 2  

(1.2 E )  

(1.0: O h  (3.0 E )  

(L00)l (3.0 E )  f 1 1 3 4 8 1 2  
I 2  3 6 10 17 

1 2 4  6 1 1  
( I .  2: E )  ~ 1 1 3 . 5 9 1 4  

(0. I: 0)O (2. I: E )  0 1 1 3 5  9 1 4  
(0.3: €1 0 1 2  4 6 

(0.3: E )  3 1 1 2 3  6 9 
(0. k0)2 ~ (2. 1: E )  ~ I 2 3 6 1 0 1 7  

I 1 3 4 8  

7 

(0. I: 0) I (2. I: E )  f 1 2  4 7 I2 19 

I 
(0.3: E )  5 

The corresponding branching multiplicities are displayed in table 11 for all VA with level 
L = h o + h l  < 3 down to depth e (c 6. 

Turning to alternative gradings, as pointed out at the end of section 7, the &-grading 
01 and the &-grading h are both such that AI”, is isomorphic to AY). The gradings of the 
representations V A  and the branching of V,” in accordance with the formula 

V,” = $,b$ V’ 

which may be determined as before. The relevant mappings take the form 

(20.0 + 0.1 3 0.1 ; I d )  &-grading IY I ( 3 ~  + 2 q ,  0.1; fd) &-grading h 
(8.14) (0.0, 0.1; 4 + (50~51;  4 = 

and the corresponding branching multiplicities for level-one representations are given to 
depth less than 6 in table 12. These branching rules, and indeed the cokesponding 
embeddings of A Y )  in AY), do not coincide with the branching rule, and the corresponding 
embedding, used elsewhere [131 to illustrate the notion of subjoinings within a Kac-Moody 
algebra context. 
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